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Agenda 

•  GPU search 
–  Reminder: Porting CPU search 
–  Back to the drawing board: 

•  P-ary search 
•  Experimental evaluation 
•  Why it works 

•  Building a GPU based data warehouse solution 
–  From a query to operators 
–  What to accelerate 
–  What are the bottlenecks/limitations 

•  Maximizing data path efficiency 
–  Extremely fast storage solution 
–  Storage to host to device 

•  Putting it all together 
–  Prototype demo 
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Binary Search on the GPU – optimized 
•  Replace byte-wise strcmp with larger word size (uint4) 

•  What happens if we load character strings as integers ? 
•  Prefetch (cache) intermediate values in shared memory 

•  Don’t newer GPUs have caches ? 
•  Inline the function calls 
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Binary Search on the GPU – optimized 
•  Replace byte-wise strcmp with larger word size (uint4) 

•  What happens if we load character strings as integers ? 
•  Prefetch (cache) intermediate values in shared memory 

•  Don’t newer GPUs have caches ? 
•  Inline the function calls 

# search queries 

Searching a 
large data set 
(512MB) with   
33 million (2^25)        
16-character 
strings 
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Binary Search 
 
•  How Do you (efficiently) search an index? 

•  1st name = whom    
you are looking for? 

•  < , > ? 
•  Iterate 
 

–  Each iteration:  
#entries/2 (n/2) 

–  Total time:          
! log2(n) 

•  Open phone 
book ~middle 
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Parallel (Binary) Search 
 
•  What if you have some friends (3) to help you ? 

•  Give each of them ¼ * 

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-) 

•  Divide et impera ! 

–  Each is using binary search takes log2(n/4) 
•  All can work in parallel ! faster:  log2(n/4) < log2(n) 
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Parallel (Binary) Search 
 
•  What if you have some friends (3) to help you ? 

•  Give each of them ¼ * 

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-) 

•  Divide et impera ! 

–  Each is using binary search takes log2(n/4) 
•  All can work in parallel ! faster:  log2(n/4) < log2(n) 
•  3 of you are wasting time ! 



© 2013 IBM Corporation 

P-ary Search 
 
•  Divide et impera !! 

... 

•  How do we know who has the right piece ? 
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P-ary Search 
 
•  Divide et impera !! 

... 

•  It's a sorted list: 
–  Look at first and last entry of a subset 
–  If first entry < searched name < last entry 

•  Redistribute 
•  Otherwise … throw it away 

–  Iterate 

•  How do we know who has the right piece ? 
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P-ary Search 
 
•  What do we get? 

•  Each iteration: n/4                
! log4(n) 

•  Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n) 

•  But each does 2 lookups ! 
•  How time consuming are 

lookup and redistribution ? 

+ 
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P-ary Search 
 
•  What do we get? 

•  Each iteration: n/4                
! log4(n) 

•  Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n) 

•  But each does 2 lookups ! 
•  How time consuming are 

lookup and redistribution ? 

+ 

memory 
access 

synchronization 

= = 
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P-ary Search 
 
•  What do we get? 

+ 

•  Searching a database index can be implemented the same way 
–  Friends = Processor cores (threads) 
– Without destroying anything ;-) 

•  Each iteration: n/4                
! log4(n) 

•  Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n) 

•  But each does 2 lookups ! 
•  How time consuming are 

lookup and redistribution ? 

memory 
access 

synchronization 

= = 
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P-ary Search - Implementation  
•  Strongly relies on fast synchronization 

•  friends = threads / vector elements 

 

 
        Iteration 1) 

 
        

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9 

P0: g P1: g P2: g P3: g 
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P-ary Search - Implementation  
•  Strongly relies on fast synchronization 

•  friends = threads / vector elements 

 

 
        Iteration 1) 

 
        Iteration 2) 

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9 

P0: g P1: g P2: g P3: g 

 P0 P1 P2 P3: g 

c d e f g h i j k 
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P-ary Search - Implementation  
•  Strongly relies on fast synchronization 

•  friends = threads / vector elements 

 

 
        Iteration 1) 

 
        Iteration 2) 

•  Synchronization ~ repartition cost 
•  pthreads ($$), cmpxchng($) 
•  SIMD SSE-vector, GPU threads via shared memory (~0) 

•  Implementation using a B-tree is similar and (obviously) faster 

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9 

P0: g P1: g P2: g P3: g 

 P0 P1 P2 P3: g 

c d e f g h i j k 
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•  B-trees group pivot elements into nodes 

P-ary Search - Implementation  

d g h i j k o p q r 

4 c k s z 

5 8 9 a b 

6 7 

... 

P0P1P2P3 

P0P1P2P3 

•  Access to pivot elements is coalesced instead of a gather 
•  Nodes can also be mapped to 

–  Cache Lines (CSB+ trees) 
–  Vectors (SSE) 
–  #Threads per block 
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P-ary Search on a sorted integer list – Implementation (1) 

__shared__ int offset; 
__shared__ int cache[BLOCKSIZE+2] 

 
__global__ void parySearchGPU(int� data, int length, 

         int� list_of_search_keys, int� results) 
 

   int start, sk; 
   int old_length = length; 

// initialize search range starting with the whole data set  
   if (threadIdx.x ==0 ) { 

      offset = 0; 
      // cache search key and upper bound in shared memory 

      cache[BLOCKSIZE] = 0x7FFFFFFF; 
      cache[BLOCKSIZE+1] = list_of_search_keys[blockIdx.x]; 

      results[blockIdx.x] = -1; 
   } 

   __syncthreads(); 
   // 

   sk = cache[BLOCKSIZE+1]; 
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P-ary Search on a sorted integer list – Implementation (1) 

__shared__ int offset; 
__shared__ int cache[BLOCKSIZE+2] 

 
__global__ void parySearchGPU(int� data, int length, 

         int� list_of_search_keys, int� results) 
 

   int start, sk; 
   int old_length = length; 

// initialize search range starting with the whole data set  
   if (threadIdx.x ==0 ) { 

      offset = 0; 
      // cache search key and upper bound in shared memory 

      cache[BLOCKSIZE] = 0x7FFFFFFF; 
      cache[BLOCKSIZE+1] = list_of_search_keys[blockIdx.x]; 

      results[blockIdx.x] = -1; 
   } 

   __syncthreads(); 
   // 

   sk = cache[BLOCKSIZE+1]; Why? 
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P-ary Search on a sorted list – Implementation (2) 
    // repeat until the #keys in the search range < #threads 
    while (length > BLOCKSIZE){ 

        // calculate search range for this thread 
 length = length/BLOCKSIZE; 

        if (length * BLOCKSIZE < old_length) length += 1; 
        old_length = length; 

 // why don’t we just use floating point? 
 start = offset + threadIdx.x * length; 

        // cache the boundary keys 
        cache[threadIdx.x] = data[start]; 

        __syncthreads(); 
        // if the searched key is within this thread's subset, 

        // make it the one for the next iteration 
        if (sk >= cache[threadIdx.x] && sk < cache[threadIdx.x+1]){ 

            offset = start; 
        } 

 __syncthreads(); 
  // all threads start next iteration with the new subset 

    } 
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P-ary Search on a sorted list – Implementation (2) 
    // repeat until the #keys in the search range < #threads 
    while (length > BLOCKSIZE){ 

        // calculate search range for this thread 
 length = length/BLOCKSIZE; 

        if (length * BLOCKSIZE < old_length) length += 1; 
        old_length = length; 

 // why don’t we just use floating point? 
 start = offset + threadIdx.x * length; 

        // cache the boundary keys 
        cache[threadIdx.x] = data[start]; 

        __syncthreads(); 
        // if the searched key is within this thread's subset, 

        // make it the one for the next iteration 
        if (sk >= cache[threadIdx.x] && sk < cache[threadIdx.x+1]){ 

            offset = start; 
        } 

 __syncthreads(); 
  // all threads start next iteration with the new subset 

    } 

Why? 
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P-ary Search on a sorted list – Implementation (3) 

    // last iteration 

    start = offset + threadIdx.x; 

    if (sk == data[start]) 

        results[blockIdx.x] = start; 

} 
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P-ary Search on a sorted list – Implementation (3) 

    // last iteration 

    start = offset + threadIdx.x; 

    if (sk == data[start]) 

        results[blockIdx.x] = start; 

} 

 Why don’t cache? 
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P-ary Search – Analysis 

•  100% processor utilization for each query 

•  Multiple threads can find a result 
•  How does this impact correctness? 

c d e f g h i j 

 P0   P1    P2   P3: g 

k 
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P-ary Search – Analysis 

•  100% processor utilization for each query 

•  Multiple threads can find a result 
•  How does this impact correctness? 

•  Convergence depends on #threads 

"  GTX285: 1 SM, 8 cores(threads) → p=8 

•  Better Response time 
• logp(n) vs log2(n) 

c d e f g h i j 

 P0   P1    P2   P3: g 

k 
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P-ary Search – Analysis 

•  100% processor utilization for each query 

•  Multiple threads can find a result 
• Does not change correctness 

•  Convergence depends on #threads 

   GTX285: 1 SM, 8 cores(threads) → p=8 

•  Better Response time 
• logp(n) vs log2(n) 

•  More memory access 
• (p*2 per iteration) * logp(n) 
• Caching 
(p-1) * logp(n) vs. log2(n) 

c d e f g h i j 

PE0 PE1 PE2 PE3: g 

k 
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P-ary Search – Analysis 

•  100% processor utilization for each query 

•  Multiple threads can find a result 
• Does not change correctness 

•  Convergence depends on #threads 

   GTX285: 1 SM, 8 cores(threads) → p=8 

•  Better Response time 
• logp(n) vs log2(n) 

•  More memory access 
• p*2 per iteration * logp(n) 
• Caching 
(p-1) * logp(n) vs. log2(n) 

•  Lower Throughput 
• 1/logp(n)  vs  p/log2(n) 

c d e f g h i j 

PE0 PE1 PE2 PE3: g 
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P-ary Search (GPU) – Throughput 

Searching a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz. 

•  Superior throughput compared to conventional algorithms 

#parallel queries 
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P-ary Search (GPU) – Response Time 

Searching a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz. 

•  Response time is workload independent for B-tree implementation  
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#parallel queries 
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P-ary Search (GPU) – Scalability  

64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz. 

•  GPU Implementation using SIMT (SIMD threads) 
•  Scalability with increasing #threads (P) 
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64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz. 

•  GPU Implementation using SIMT (SIMD threads) 
•  Scalability with increasing #threads (P) 

P-ary Search (GPU) – Scalability  
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P-ary Search(CPU) = K-ary Search1  

Searching a 512MB data set with 134mill. 4-byte integer entries, 
Core i7 2.66GHz, DDR3 1666.   

•  K-ary search is the same algorithm ported to the CPU using 
SSE vectors (int4) → convergence rate log4(n) 

1 B. Schlegel, R. Gemulla, W. Lehner, k-Ary Search on Modern Processors, DaMoN 2000 
                 

K-ary 
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P-ary Search(CPU) = K-ary Search1  

64K search queries against a 512MB data set with 134mill. 4-byte integer entries, 
Core i7 2.66GHz, DDR3 1666.   

•  Throughput scales proportional to #threads 

1 B. Schlegel, R. Gemulla, W. Lehner, k-Ary Search on Modern Processors, DaMoN 2000 
                 

K-ary 



© 2013 IBM Corporation 

Agenda 

•  GPU search 
–  Reminder: Porting CPU search 
–  Back to the drawing board: 

•  P-ary search 
•  Experimental evaluation 
•  Why it works 

•  Building a GPU based data warehouse solution 
–  From a query to operators 
–  What to accelerate 
–  What are the bottlenecks/limitations 

•  Maximizing data path efficiency 
–  Extremely fast storage solution 
–  Storage to host to device 

•  Putting it all together 
–  Prototype demo 
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A data warehousing query in multiple languages 
A closer look at DWH queries 

■  English: Show me the annual development of revenue from US sales of 
US products for the last 5 years by city 

35 
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A data warehousing query in multiple languages 
A closer look at DWH queries 

■  English: Show me the annual development of revenue from US sales 
of US products for the last 5 years by city 

■  SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue) 
 FROM lineorder lo, customer c, supplier s, date d 
 WHERE lo.custkey = c.custkey 
  AND lo.suppkey = s.suppkey 
  AND lo.orderdate = d.datekey 
  AND c.nation = ’UNITED STATES’ 
  AND s.nation = ’UNITED STATES' 
  AND d.year >= 1998 AND d.year <= 2012 

  GROUP BY c.city, s.city, d.year 
  ORDER BY d.year asc, revenue desc;  

36 



© 2013 IBM Corporation 

A data warehousing query in multiple languages 
A closer look at DWH queries 

■  English: Show me the annual development of revenue from US sales    
of US products for the last 5 years by city 

■  SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue) 
 FROM lineorder lo, customer c, supplier s, date d 
 WHERE lo.custkey = c.custkey 
  AND lo.suppkey = s.suppkey 
  AND lo.orderdate = d.datekey 
  AND c.nation = ’UNITED STATES’ 
  AND s.nation = ’UNITED STATES' 
  AND d.year >= 1998 AND d.year <= 2012 

  GROUP BY c.city, s.city, d.year 
  ORDER BY d.year asc, revenue desc;  

37 

? 
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Star Schema – typical for DWH 

Query: 
SELECT c.city, s.city, d.year, SUM(lo.revenue) FROM lineorder lo, customer c, supplier s, date d 
WHERE lo.custkey = c.custkey AND lo.suppkey = s.suppkey AND lo.orderdate = d.datekey AND       
c.nation = ’UNITED STATES’ AND s.nation = ’UNITED STATES’ AND d.year >= 1998 AND d.year <= 2012 
GROUP BY c.city, s.city, d.year ORDER BY d.year asc, revenue desc;  
 

A closer look at DWH queries 

ORDERKEY!
LINENUMBER!
CUSTKEY!
PARTKEY!
SUPPKEY!
ORDERDATE!
ORDPRIORITY!
…!
…!
COMMITDATE!
SHIPMODE!

CUSTKEY!
NAME!
ADDRESS!
CITY!
…!

SUPPKEY!
NAME!
ADDRESS!
CITY!
…!

PARTKEY!
NAME!
MFGR!
CATEGORY!
BRAND!
…!

DATEKEY!
DATE!
DAYOFWEEK!
MONTH!
YEAR!
…!

Customer 

Date 

Lineorder 

Supplier 

Part 

38 
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A data warehousing query in multiple languages 
A closer look at DWH queries 

■  English: Show me the annual development of revenue from US sales    
of US products for the last 5 years by city 

■  SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue) 
 FROM lineorder lo, customer c, supplier s, date d 
 WHERE lo.custkey = c.custkey 
  AND lo.suppkey = s.suppkey 
  AND lo.orderdate = d.datekey 
  AND c.nation = ’UNITED STATES’ 
  AND s.nation = ’UNITED STATES' 
  AND d.year >= 1998 AND d.year <= 2012 

  GROUP BY c.city, s.city, d.year 
  ORDER BY d.year asc, revenue desc;  

39 

Database primitives (operators): 
– Predicate(s): customer, supplier, and date       direct filter (yes/no) 
– Join(s): lineorder with part, supplier, and date      correlate tables & filter 
– Group By (aggregate): city and date       correlate tables & sum 
– Order By: year and revenue        sort 

     What are the most time-consuming operations? 
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Where does time go? 
A closer look at DWH queries 

SELECT c.city, s.city, d.year, SUM(lo.revenue) 
 FROM lineorder lo, customer c, supplier s, date d 
 WHERE c.nation = ’UNITED STATES’       AND lo.custkey = c.custkey  
   AND s.nation = ’UNITED STATES’       AND lo.suppkey = s.suppkey 
   AND d.year >= 1998 AND d.year <= 2012 AND lo.orderdate = d.datekey       
 GROUP BY c.city, s.city, d.year 

    ORDER BY d.year asc, revenue desc;  
 

40 
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Relational Joins  

41 

Key Zip 
11 95014 
23 94303 
27 95040 
39 95134 

Revenue Customer 

$10.99 23 
$49.00 14 
$11.00 56 

$103.00 11 
$84.50 39 
$60.10 27 

$7.60 23 

Sales (Fact Table) 
Customers (living in US) 

Revenue Zip 
$10.99 94303 

$103.00 95014 
$84.50 95134 
$60.10 95040 

$7.60 94303 

=

Join 
Results Payload (p) 

Foreign Key (fk) 

Primary Key (k) 

Measure (m) 

A closer look at DWH queries 



© 2013 IBM Corporation 

Join two tables (|S| < |R|) in 2 steps 
1.  Build a hash table  

–  Scan S and compute a location (hash) 
based on a unique (primary) key 

–  Insert primary key k with payload p into 
the hash table 

–  If the location is occupied pick the next 
free one (open addressing) 

A closer look at DWH queries 

 k2,p2 

Hash table S 

S
ca

n  k1,p1  k1,p1 

 k2,p2 

Hash Join 

42 
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Join two tables (|S| < |R|) in 2 steps 
1.  Build a hash table  

–  Scan S and compute a location (hash) 
based on a unique (primary) key 

–  Insert primary key k with payload p into 
the hash table 

–  If the location is occupied pick the next 
free one (open addressing) 

2.  Probe the hash table 
–  Scan R and compute a location (hash) 

based on the reference to S (foreign 
key) 

–  Compare foreign key fk and key k in 
hash table 

–  If there is a match store the result (m,p) 

fk2,m2 

 k6,p6 

Hash table R 
     

S
ca

n 

A closer look at DWH queries 

... 
fk1,m1 

 k2,p2 

 k5,p5 

 k1,p1 

 k3,p3 

 k4,p4 

 k7,p7 

Hash Join 

43 
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"  Multiple threads scan T1 and attempt  to insert <key,rid> pairs into the hash table 

"  How to handle hash collisions? 

 

 

 

 

 

 
 

Parallel Hash Join 

Hash table 

T1 

S
can 

S
can 

S
can 

P
arallel 

Collisions 

A closer look at DWH queries 
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"  Multiple threads scan T1 and attempt  to insert <key,rid> pairs into the hash table 

"  How to handle hash collisions? 

 

 

 

 

 

 
 

 

 

"  Is this a good access pattern?  

"  Parallel probe is trivial as it requires read-only access 

Parallel Hash Join 

Hash table 

T1 

S
can 

S
can 

S
can 

P
arallel 

Collisions 

A closer look at DWH queries 
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Hash Join  

46 

Key Zip 
11 95014 
23 94303 
27 95040 
39 95134 

Revenue Customer 

$10.99 23 
$49.00 14 
$11.00 56 

$103.00 11 
$84.50 39 
$60.10 27 

$7.60 23 

Sales (Fact Table) 
Customers (living in US) 

Hash Table (HT) 

Probe Inputs 

Revenue Zip 
$10.99 94303 

$103.00 95014 
$84.50 95134 
$60.10 95040 

$7.60 94303 

=

Join 
Results Payload (p) Primary Key (k) 

Foreign Key (fk) 

A closer look at DWH queries 

How fast are hash probes ? 
-  Computation 
-  Data (memory) access 
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Computing Hash Functions on GTX580 – Compute only * 

47 

Hash Function/ 
Key Ingest GB/s 

Seq keys+ 
Hash 

LSB 338  
Fowler-Noll-Vo 1a 129 
Jenkins Lookup3 79 
Murmur3 111 
One-at-a-time 85 
CRC32 78 
MD5 4.5 
SHA1 0.81 

^

seq. 
keys 

 

h(x) 

sum 

^

seq. 
keys 

 

h(x) 

sum 

^

seq. 
keys 

 

h(x) 

sum 

^

seq. 
keys 

 

h(x) 

sum 

32 

sum 

threads 

"  Threads generate sequential keys 
"  Hashes are XOR-summed locally 

Cryptographic message  
digests 

32-bit keys, 32-bit hashes 

* More details on hashing: “Let your GPU do the heavy lifting in your data warehouse” GTC’13 

A closer look at DWH queries 

…
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Hash Join – Data Access Patterns 
A closer look at DWH queries 

■  Primary data access patterns: 
– Scan the input table(s) for HT creation and probe    
– Compare and swap when inserting data into HT 
– Random read when probing the HT 

48 
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Hash Join – Data Access Patterns  
A closer look at DWH queries 

■  Primary data access patterns: 
– Scan the input table(s) for HT creation and probe    
– Compare and swap when inserting data into HT 
– Random read when probing the HT 

■  Data (memory) access on 

GPU 
(GTX580) 

CPU  
(i7-2600) 

Peak memory bandwidth [spec] 1) 179 GB/s  21 GB/s 

Peak memory bandwidth [measured] 2) 153 GB/s 18 GB/s Scan R, S 

vs. 

Upper bound for: 

49 

(1) Nvidia: 192.4 � 106 B/s ≈ 179.2 GB/s 
(2) 64-bit accesses over 1 GB of device memory 
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Hash Join – Data Access Patterns 
A closer look at DWH queries 

■  Primary data access patterns: 
– Scan the input table(s) for HT creation and probe    
– Compare and swap when inserting data into HT 
– Random read when probing the HT 

■  Data (memory) access on 

GPU 
(GTX580) 

CPU  
(i7-2600) 

Peak memory bandwidth [spec] 1) 179 GB/s  21 GB/s 

Peak memory bandwidth [measured] 2) 153 GB/s 18 GB/s 

Random access [measured] 2) 6.6 GB/s 0.8 GB/s 

Compare and swap [measured] 3) 4.6 GB/s 0.4 GB/s 

vs. 

Build HT 
Probe 

Upper bound for: 

50 

(1) Nvidia: 192.4 � 106 B/s ≈ 179.2 GB/s 
(2) 64-bit accesses over 1 GB of device memory 
(3) 64-bit compare-and-swap to random locations over 1 GB device memory 
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GPU Hash Join Implementation (Summary) 
Hash Join – Kernel(s) 

1.  Pin input tables 
– Required for Build and Probe table, done bye the CPU 
– Only pinned CPU memory is accessible by the GPU 
– “GPU direct” now allows to read directly from network/storage devices  …  

2.  Allocate memory for HT 
– CPU handles memory allocation of GPU memory 
– This is supposed to change with the next GPU generation … 

3.  Build HT 
– GPU reads build table (T1) sequentially from pinned CPU memory 
– GPU creates HT (open addressing) in GPU memory 
– Collisions are handled using atomic compare-and-swap 

4.  Probe HT 
– GPU reads probe table (T2) sequentially from CPU memory 
– GPU probes hash table (in GPU memory) and writes results to CPU memory 

5.  Cleanup 
– free GPU memory 
– Unpin input tables 
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GPU Hash Join – Build HT 

" GPU reads build table (T1) sequentially from pinned CPU memory 

" GPU creates HT (open addressing) in GPU memory 

" Collisions are handled using atomic compare-and-swap 

Hash table Build table (T1) 

Create HT   
@ 4.6 GB/s? 

Key 
Key 

Key 

Key 
Key 

ridT1 
ridT1 

ridT1 

ridT1 
ridT1 

key 
key 
key 
key 
key 
key 

ridT1 
ridT1 
ridT1 
ridT1 
ridT1 
ridT1 

Hash Join – Kernel(s) 
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Build HT – Memory Management & Function call 
Hash Join – Kernel(s) 

// register input table 

// 32-bit key + 32-bit rid are stored as a single 64-bit value  

unsigned long long int* buildT; 

cudaHostRegister(T1,num_tuples*2*sizeof(int),cudaHostRegisterMapped);  

cudaHostGetDevicePointer(&buildT,T1,0); 

 

// make space for hash table 

unsigned long long int* HT; 

int HT_rows = 4 * num_tuples; 

cudaMalloc(&HT, HT_rows * sizeof(int)); 

cudaMemSet(HT, 0, HT_rows * sizeof(int)); 

 

// call device function 

dim3 Dg = dim3(16,0,0); 

dim3 Db = dim3(512,0,0); 

gpuCreateHashtable <<< Dg, Db >>>(builtT, num_tuples, 

        HT, HT_rows);   
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Build HT – Local variables  
Hash Join – Kernel(s) 

__global__ static void gpuCreateHashtable(unsigned long long int *buildT,

                     int num_tuples, 

       unsigned long long int *HT, 

       int HT_rows){ 

 

int insert_loc;                       // insert location for tuple 

int tupleID;                          // iterator for the build table 

int cas_result;                       // HT was initialized with 0, i.e. 

          // if insert was successful then 

          // cas_result = 0 

int hash_mask = HT_rows - 1;          // LSB hash mask (for powers of 2!) 

unsigned long long int buildT_cache;  // register cache for a build table 

int key;          // key extracted from build table 
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Build HT – Outline 
Hash Join – Kernel(s) 

// Iterate through the tuples of the build table and insert them into the  

// hash table 

for (tupleID = blockIdx.x*blockDim.x+threadIdx.x; 

     tupleID < num_tuples; 

     tupleID += blockDim.x*gridDim.x){ 

  /* 1) Cache the build table entry (key,rid) in a register  

   * 2) Apply hash function (LSB) to to key to determine insert position 

   * 3) Starting from the insert position, scan for the next available  

   *    slot 

   * 4) Atomically insert the entry into the hash table 

   */ 
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Build HT – Memory Access 
Read build table from host memory 

Hash Join – Kernel(s) 

for (tupleID = blockIdx.x*blockDim.x+threadIdx.x; 

     tupleID < num_tuples; 

     tupleID += blockDim.x*gridDim.x){ 

buildT_cache = buildT[tupleID]; 

"  Ideal memory access pattern is coalesced memory access 
– Threads of a block/warp access consecutive memory addresses 

 
 
 
– Same applies to ZCA to host(main) memory 

•  Coalesced access up to 6.2 GB/s 
•  Random = faux pas !   

Memory 
address 

Thread 1 Thread 2 Thread N 

m m+1 m+n 

… 

… 
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Build HT – Core Loop 
for (tupleID = blockIdx.x*blockDim.x+threadIdx.x; 

     tupleID < num_tuples; 

     tupleID += blockDim.x*gridDim.x) 

{ 

   cas_result = 42;  // answer to everything ;-) 

   // 1) Cache the build table entry (key,rid) in a register 

   buildT_cache = buildT[tupleID]; 

Hash Join – Kernel(s) 
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Build HT – Core Loop 
for (tupleID = blockIdx.x*blockDim.x+threadIdx.x; 

     tupleID < num_tuples; 

     tupleID += blockDim.x*gridDim.x) 

{ 

   cas_result = 42;  // answer to everything ;-) 

   // 1) Cache the build table entry (key,rid) in a register 

   buildT_cache = buildT[tupleID]; 

 

   // 2) Apply LSB hash to key to determine insert position 

   //    Little endian: <key,rid> becomes <rid,key> in the register 

   key = (int)(buildT_cache & 0xFFFFFFFF);  // key in the lower half   

   insert_loc = key & hash_mask; 

Hash Join – Kernel(s) 
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Build HT – Core Loop 
for (tupleID = blockIdx.x*blockDim.x+threadIdx.x; 

     tupleID < num_tuples; 

     tupleID += blockDim.x*gridDim.x) 

{ 

   cas_result = 42;  // answer to everything ;-) 

   // 1) Cache the build table entry (key,rid) in a register 

   buildT_cache = buildT[tupleID]; 

 

   // 2) Apply LSB hash to key to determine insert position 

   //    Little endian: <key,rid> becomes <rid,key> in the register 

   key = (int)(buildT_cache & 0xFFFFFFFF);  // key in the lower half   

   insert_loc = key & hash_mask; 

 

   // 3) From insert position scan for the next available slot (0) to     

   //    avoid repeated atomic compare-and-swap ($$$) 

   while (HT[insert_loc] != 0) 

      insert_loc = ++insert_loc & hash_mask; 

Hash Join – Kernel(s) 
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Build HT – Core Loop 
   // 1) Cache the build table entry (key,rid) in a register 

   buildT_cache = buildT[tupleID]; 

 

   // 2) Apply LSB hash to key to determine insert position 

   //    Little endian: <key,rid> becomes <rid,key> in the register 

   key = (int)(buildT_cache & 0xFFFFFFFF);  // key in the lower half   

   insert_loc = key & hash_mask; 

 

   // 3) From insert position scan for the next available slot (0) to     

   //    avoid repeated atomic compare-and-swap ($$$) 

   while (HT[insert_loc] != 0) 

      insert_loc = ++insert_loc & hash_mask; 

 

   // 4) Atomically insert entry into the hash table 

   while(cas_result != 0){ 

      cas_result = atomicCAS(&(HT[insert_loc]), 0, buildT_cache); 

      insert_loc = ++insert_loc & hash_mask; 

   } 

Hash Join – Kernel(s) 
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GPU Hash Join – Probe HT 

" GPU reads probe table (T2) sequentially from CPU memory 
" GPU probes hash table (in GPU memory) and writes results to CPU memory 

Hash table 
fk 
fk 
fk 
fk 
fk 
fk 

ridT2 
Probe table 

ridT2 
ridT2 
ridT2 
ridT2 
ridT2 

Probe HT     
@ 6.2 GB/s? 

Key 
Key 

Key 

Key 
Key 

ridT1 
ridT1 

ridT1 

ridT1 
ridT1 

Store results 
@ 6.2 GB/s? 

ridT1 
ridT1 

ridT2 
Join result 

ridT2 

Hash Join – Kernel(s) 
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Probe HT – Memory Management & Function call 
Hash Join – Kernel(s) 

// register input table 

// 32-bit key + 32-bit rid are stored as a single 64-bit value  

unsigned long long int* probeT; 
cudaHostRegister(T2,num_tuples*2*sizeof(int),cudaHostRegisterMapped);  
cudaHostGetDevicePointer(&probeT,T2,0); 
 

// make space for results 

unsigned long long int* resG; 
cudaHostAlloc(&resG, 2 * num_tuples * sizeof(int)); 
 

// result  index 

__device__ int gpu_result_index; 
cudaMemcpyToSymbol(gpu_result_index, &null, sizeof(int)); 
 

// call device function 

dim3 Dg = dim3(16,0,0); 
dim3 Db = dim3(512,0,0); 
gpuProbe <<< Dg, Db >>>(probeT, HT, resG, num_tuples, HT_rows);   
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Probe HT – Local Variables 
Hash Join – Kernel(s) 

__global__ static void gpuProbe(unsigned long long int* probeT, 

    unsigned long long int* HT,  

      unsigned long long int* resG, 

    int probeT_rows, int HT_rows) 

{ 

   int probeT_key;              // the probe table key used for a probe 

   int HT_idx;           // hash table location the probe lead to 

   int HT_key;           // the key found at the hash table 
    // location of hashtable_idx 

   int tupleID;                 // iterator for the probe table 

   int hash_mask = HT_rows - 1; // LSB hash mask 

   int result_insert_position;  // index to the result, shared by ALL 
    // threads (atomic insert) 

   unsigned long long int probeT_cache;  // register cache for probe table 

   unsigned long long int HT_cache;      // register cache for hash table 
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Probe HT – Outline 
Hash Join – Kernel(s) 

// Iterate through the tuples of the probe table and 

   for (tupleID=blockIdx.x*blockDim.x+threadIdx.x; 

        tupleID < probeT_rows; 

        tupleID+=blockDim.x*gridDim.x) { 

      /* 1) Cache the fact table entry (key,rid) in a register & extract  

       *    the fact table key 

       * 2) Apply the hash function to the key to determine the location  

       *    in the hash table 

       * 3) Probe the hash table and cache the entry (key,rid) in a  

       *    register 

       * 4) Scan the hash table for more matching keys until we hit an  

       *    empty (0) position 

       */  
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Probe HT – Core Loop 
Hash Join – Kernel(s) 

for (tupleID=blockIdx.x*blockDim.x+threadIdx.x; 

     tupleID < probeT_rows; 

     tupleID+=blockDim.x*gridDim.x){ 

   // 1) Cache the fact table entry (key,rid) in a register 

   probeT_cache = probeT[tupleID]; 

   //    Extract the fact table key  

   //    Little endian: <key,rid> becomes <rid,key> in the register 

   probeT_key = (int)(probeT_cache & 0xFFFFFFFF); // key in lower half 
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Probe HT – Core Loop 
Hash Join – Kernel(s) 

for (tupleID=blockIdx.x*blockDim.x+threadIdx.x; 

     tupleID < probeT_rows; 

     tupleID+=blockDim.x*gridDim.x){ 

   // 1) Cache the fact table entry (key,rid) in a register 

   probeT_cache = probeT[tupleID]; 

   //    Extract the fact table key  

   //    Little endian: <key,rid> becomes <rid,key> in the register 

   probeT_key = (int)(probeT_cache & 0xFFFFFFFF); // key in lower half 

 

  // 2) Hash the key to determine the location in the hash table 

   HT_idx = probT_key & hash_mask; 
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Probe HT – Core Loop 
Hash Join – Kernel(s) 

for (tupleID=blockIdx.x*blockDim.x+threadIdx.x; 

     tupleID < probeT_rows; 

     tupleID+=blockDim.x*gridDim.x){ 

   // 1) Cache the fact table entry (key,rid) in a register 

   probeT_cache = probeT[tupleID]; 

   //    Extract the fact table key  

   //    Little endian: <key,rid> becomes <rid,key> in the register 

   probeT_key = (int)(probeT_cache & 0xFFFFFFFF); // key in lower half 

 

  // 2) Hash the key to determine the location in the hash table 

   HT_idx = probT_key & hash_mask; 

 

   // 3) Probe the hash table and cache the entry (key,rid) in a register  

   HT_cache = HT[HT_idx]; 
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Probe HT – Core Loop 
Hash Join – Kernel(s) 

   /* Scan open addressing hash table until we hit an empty(0) slot 
    * 4.1) If keys match insert rids from the probe and hash table into         
    *      the global result set 
    * 4.2) Cache the next hash table entry and extract the key 
    */ 
   while (HT_cache != 0) { 
      HT_key = (int)(HT_cache & 0xFFFFFFFF); 
      if (probeT_key == HT_key) { 
         // determine position in global result set 
         result_insert_position = atomicAdd(&gpu_result_index, 1); 
         // insert result=<rid,rid> 
         // rids are both in the upper half of the register caches, 
         // so we need to shift one of them (hashtable cache) down 
         resG[result_insert_position] = (probeT_cache & 0xFFFFFFFF00000000)  

     | (HT_cache >> 32); 
      } 
      HT_idx = ++HT_idx & hash_mask; 
      HT_cache = HT[HT_idx]; 
} 
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Retrieving result count & cleanup 
Hash Join – Kernel(s) 

... 
// After GPU function completes 
cudaDeviceSynchronize(); 
cudaMemcpyFromSymbol(rescount, gpu_result_index, sizeof(int)); 
 
// clean up memory 
cudaHostUnregister(T1); 
cudaHostUnregister(T1); 
cudaFree(HT); 
... 
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Throughput 
"  Join 2 equal size tables (16M rows) of 32-bit <key,row-ID> pairs (4+4 Byte) 

– Uniformly distributed randomly generated keys 
– 3% of the keys in the probe table have a match in the build table 
– Measuring End-to-End throughput, i.e. input tables & results in host memory 

few writes 

worst 
case 

Evaluation GPU Join 
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Throughput 

few writes 

"  Join 2 equal size tables (16M rows) of 32-bit <key,row-ID> pairs (4+4 Byte) 
– Uniformly distributed randomly generated keys 
– 3% of the keys in the probe table have a match in the build table 
– Measuring End-to-End throughput, i.e. input tables & results in host memory 

worst 
case 

Evaluation GPU Join 
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Throughput 

few writes 

PCI-E 

Random memory access CPU 

Compare and Swap GPU 

worst 
case 

"  Join 2 equal size tables (16M rows) of 32-bit <key,row-ID> pairs (4+4 Byte) 
– Uniformly distributed randomly generated keys 
– 3% of the keys in the probe table have a match in the build table 
– Measuring End-to-End throughput, i.e. input tables & results in host memory 

Evaluation GPU Join 
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  vs. Hash revisited: fast join implementation on modern multi-core CPUs. VLDB 2009 

  GPU        vs.    CPU 

"  Join 2 equal size tables (512K to 128M) of 32-bit <key,row-ID> pairs (4 + 4 Byte) 
" Uniformly distributed randomly generated keys 
" 3% of the probe keys have a match in the build table 
" CPU implementation does not materialize results 

Evaluation GPU Join 
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2 C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. Nguyen, A. Di Blas, V. Lee, N. Satish, P. Dubey. Sort      
  vs. Hash revisited: fast join implementation on modern multi-core CPUs. VLDB 2009 

  GPU        vs.    CPU 

"  Join 2 equal size tables (512K to 128M) of 32-bit <key,row-ID> pairs (4 + 4 Byte) 
" Uniformly distributed randomly generated keys 
" 3% of the probe keys have a match in the build table 
" CPU implementation does not materialize results 
" Cycles/tuple not a meaningful metric 

– depends on processor frequency, tuple size, … 

Evaluation GPU Join 



© 2013 IBM Corporation 

Where does time go? 
What’s there beside join? 

SELECT SUM(lo.revenue), d.year, p.brand 
 FROM lineorder lo, part p, supplier s, date d 
 WHERE p.category = 'MFGR#12’ AND lo.partkey = p.partkey 
   AND s.region = 'AMERICA’ AND lo.suppkey = s.suppkey 
   AND lo.orderdate = d.datekey 

  GROUP BY d.year, p.brand 
  ORDER BY d.year, p.brand;  
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Operator throughput 

■  Using a straight forward GPU implementation 
- Joins are running at < 1.5GB/s, ¼ of the expected speed! 
- Where does time go? 

What’s there beside join? 
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GPU Join – Where does time go?  

2.60%

30.39%

0.04%

20.83%

46.13% result_alloc
pin_input
createHT
probeHT
unpin

" < 21% of the runtime is spent on the actual join! 
"  Join lineorder & part has < 4% selectivity 
" At SF 100 (100GB database) p.partey is 5.4 MB, lo.partkey is 2.3 GB 

– Need to pin & unpin 2.3 GB of lineorder data 

What’s there beside join? 
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result_alloc

pin_input

createHT

probeHT

unpin
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■  Pinning/Unpinning large amounts of memory is inefficient and time consuming! 

What’s there beside join? 

GPU Join – Where does time go?  
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pin_input
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■  Pinning/Unpinning large amounts of memory is inefficient and time consuming! 

■  All steps are sequential … overlapping across operators is messy =( 

■  We could copy data chunk-wise into a (smaller) pinned buffer … 

■  Since we are already at it, how do we get the data from the file system (cache)? 

What’s there beside join? 

GPU Join – Where does time go?  
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Data flow – Current approach 

GPU 
6.2 GB/s 

3.8 GB/s 

mmap(writeable) 

file system  
cache 

Assume memory mapped files in FS cache 
→ GPU accessible pages must be pinned  
→ Pinned pages pages must be writable 
     → copy page before pinning 

PCI-E  
zero copy 

access 

What’s there beside join? 

cudaHostRegister(...); 
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Data flow – Current approach 

■  Even overlapping query execution with pinning pages for next operator (join) 
leaves pinning as a bottleneck! 

■  What if we use 2 pre-allocated buffers of pinned memory: 

■  Copy data into one of the pinned buffers 

■  Meanwhile the GPU can work on the data in the other buffer 

GPU 
6.2 GB/s 

3.8 GB/s 

mmap(writeable) 

file system  
cache 

Assume memory mapped files in FS cache 
→ GPU accessible pages must be pinned  
→ Pinned pages pages must be writable 
     → copy page before pinning 

PCI-E  
zero copy 

access 

What’s there beside join? 

cudaHostRegister(...); 
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Data flow: prefetch → memcpy → GPU access 

Key Idea: 
"  Split work: prefetch, copy, GPU access 
"  Process data set in chunks, e.g. 1MB 
"  In isolation prefetch & copy are faster 

than GPU access vie PCI-E =) 

"  Can we “simply” set up 3-stage Pipeline? 

file system  
cache 

mmap(readonly) 

GPU 
PCI-E  

zero copy 
access 

6.2 GB/s 
  

pinned 

prefetch copy 
(7.4 GB/s) (8.3 GB/s) 

... 

What’s there beside join? 
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Join with 3-stage pipeline 

8.00%
0.28%

0.15%
0.13%

91.27%

0.16%

Result alloc
Pin Dimension
Pipeline setup
Create HT
Probe HT/ load Fact
Pipeline teardown

■  2x 1MB buffers, ~2300 Kernel invocations 

SELECT SUM(lo.revenue), d.year, p.brand FROM lineorder lo, date d, part p, supplier s 
WHERE lo.orderdate = d.datekey AND lo.partkey = p.partkey AND lo.suppkey = s.suppkey  
AND p.category = 'MFGR#12’ AND s.region = 'AMERICA’ 
GROUP BY d.year, p.brand ORDER BY d.year, p.brand 

What’s there beside join? 
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■  Join lineorder & part using 2x 1MB buffers yields > 4GB/s overall throughput 

What’s there beside join? 

Join with 3-stage pipeline 

■  Other joins (with supplier and date) exhibit similar performance 
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■  Join lineorder & part using 2x 1MB buffers yields > 4GB/s overall throughput 

What’s there beside join? 

Join with 3-stage pipeline 

■  Other joins (with supplier and date) exhibit similar performance 

■  Group-by operator is quite similar to join, i.e. requires a hash table and an 
atomic add and also achieves similar performance 

■  Accelerating other operators is not worthwhile … 
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Agenda 

•  GPU search 
–  Reminder: Porting CPU search 
–  Back to the drawing board: 

•  P-ary search 
•  Experimental evaluation 
•  Why it works 

•  Building a complete data warehouse runtime with GPU support 
–  From a query to operators – what to accelerate? 
–  What are the bottlenecks/limitations 

•  Maximizing data path efficiency 
–  Extremely fast storage solution 
–  Storage to host to device 

•  Putting it all together 
–  Prototype demo 
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■  According to OCZ spec a Revodrive3 x2 can deliver 1.5 GB/s per card 

Large data sets 

6GB/s Storage Subsystem ? 

87 
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6GB/s Storage Subsystem ? 
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■  According to OCZ spec a Revodrive3 x2 can deliver 1.5 GB/s per card 
■  Can we “just stripe” the data across 4 cards and achieve 6 GB/s? 

■  Linux tools, i.e. mdraid + ext, max 2 GB/s 
■  IBM GPFS with striping and heavy prefetching(72 threads) achieves 3 GB/s 
■  SSD controllers on commodity SSDs use compression to improve throughput 

Large data sets 

6GB/s Storage Subsystem ? 
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■  According to OCZ spec a Revodrive3 x2 can deliver 1.5 GB/s per card 
■  Can we “just stripe” the data across 4 cards and achieve 6 GB/s? 

■  Linux tools, i.e. mdraid + ext, max 2 GB/s 
■  IBM GPFS with striping and heavy prefetching(72 threads) achieves 3 GB/s 
■  SSD controllers on commodity SSDs use compression to improve throughput 

■  Using 3 Texas Memory RamSan-70 and GPFS we get up to 7.5 GB/s =) 

Large data sets 

6GB/s Storage Subsystem ? 

90 
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Data flow: read → memcpy → GPU access 

Setup: 
"  Let GPFS do the striping & prefetching 
"  2 CPU threads, 

"  1 for filling a pinned buffer from FS 
"  1 for controlling GPU execution 

"  GPU reads data from pinned buffer(s) 

GPFS 

read 

GPU 
PCI-E  

zero copy 
access 

6.2 GB/s 
  

(pre-)pinned 

prefetch 

read() 

> 6.2 GB/s x72 

Large Data Sets 

SSDs 
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Result alloc
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■  Join lineorder & part using 2x 2MB buffers yields > 4GB/s overall throughput 

What’s there beside join? 

Join with 3-stage pipeline from SSD 

■  Virtually no performance difference to in-memory solution  =) 

92 
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Agenda 

•  GPU search 
–  Reminder: Porting CPU search 
–  Back to the drawing board: 

•  P-ary search 
•  Experimental evaluation 
•  Why it works 

•  Building a complete data warehouse runtime with GPU support 
–  From a query to operators – what to accelerate? 
–  What are the bottlenecks/limitations 

•  Maximizing data path efficiency 
–  Extremely fast storage solution 
–  Storage to host to device 

•  Putting it all together 
–  Prototype demo 
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Questions? 


