
© 2013 IBM Corporation

Programming GPUs for database operations

Tim Kaldewey

Oct 7 2013

Tim Kaldewey
Research Staff Member
IBM TJ Watson Research Center
tkaldew@us.ibm.com

© 2013 IBM Corporation

Disclaimer
The author's views expressed in this presentation do not necessarily reflect
the views of IBM.

Acknowledgements
I would like to thank all my co-authors from IBM and my prior positions at Oracle and
UCSC whose work I am also showing in this presentation.
I would also like to thank Patrick Cozzi for inviting me to teach in this class multiple years
in a row.

© 2013 IBM Corporation

Agenda

•  GPU search
–  Reminder: Porting CPU search
–  Back to the drawing board:

•  P-ary search
•  Experimental evaluation
•  Why it works

•  Building a GPU based data warehouse solution
–  From a query to operators
–  What to accelerate
–  What are the bottlenecks/limitations

•  Maximizing data path efficiency
–  Extremely fast storage solution
–  Storage to host to device

•  Putting it all together
–  Prototype demo

© 2013 IBM Corporation

Binary Search on the GPU – optimized
•  Replace byte-wise strcmp with larger word size (uint4)

•  What happens if we load character strings as integers ?
•  Prefetch (cache) intermediate values in shared memory

•  Don’t newer GPUs have caches ?
•  Inline the function calls

© 2013 IBM Corporation

Binary Search on the GPU – optimized
•  Replace byte-wise strcmp with larger word size (uint4)

•  What happens if we load character strings as integers ?
•  Prefetch (cache) intermediate values in shared memory

•  Don’t newer GPUs have caches ?
•  Inline the function calls

search queries

Searching a
large data set
(512MB) with
33 million (2^25)
16-character
strings

© 2013 IBM Corporation

Binary Search

•  How Do you (efficiently) search an index?

•  1st name = whom
you are looking for?

•  < , > ?
•  Iterate

–  Each iteration:
#entries/2 (n/2)

–  Total time:
! log2(n)

•  Open phone
book ~middle

© 2013 IBM Corporation

Parallel (Binary) Search

•  What if you have some friends (3) to help you ?

•  Give each of them ¼ *

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-)

•  Divide et impera !

–  Each is using binary search takes log2(n/4)
•  All can work in parallel ! faster: log2(n/4) < log2(n)

© 2013 IBM Corporation

Parallel (Binary) Search

•  What if you have some friends (3) to help you ?

•  Give each of them ¼ *

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-)

•  Divide et impera !

–  Each is using binary search takes log2(n/4)
•  All can work in parallel ! faster: log2(n/4) < log2(n)
•  3 of you are wasting time !

© 2013 IBM Corporation

P-ary Search

•  Divide et impera !!

...

•  How do we know who has the right piece ?

© 2013 IBM Corporation

P-ary Search

•  Divide et impera !!

...

•  It's a sorted list:
–  Look at first and last entry of a subset
–  If first entry < searched name < last entry

•  Redistribute
•  Otherwise … throw it away

–  Iterate

•  How do we know who has the right piece ?

© 2013 IBM Corporation

P-ary Search

•  What do we get?

•  Each iteration: n/4
! log4(n)

•  Assuming redistribution
time is negligible:
log4(n) < log2(n/4) < log2(n)

•  But each does 2 lookups !
•  How time consuming are

lookup and redistribution ?

+

© 2013 IBM Corporation

P-ary Search

•  What do we get?

•  Each iteration: n/4
! log4(n)

•  Assuming redistribution
time is negligible:
log4(n) < log2(n/4) < log2(n)

•  But each does 2 lookups !
•  How time consuming are

lookup and redistribution ?

+

memory
access

synchronization

= =

© 2013 IBM Corporation

P-ary Search

•  What do we get?

+

•  Searching a database index can be implemented the same way
–  Friends = Processor cores (threads)
– Without destroying anything ;-)

•  Each iteration: n/4
! log4(n)

•  Assuming redistribution
time is negligible:
log4(n) < log2(n/4) < log2(n)

•  But each does 2 lookups !
•  How time consuming are

lookup and redistribution ?

memory
access

synchronization

= =

© 2013 IBM Corporation

P-ary Search - Implementation
•  Strongly relies on fast synchronization

•  friends = threads / vector elements

 Iteration 1)

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9

P0: g P1: g P2: g P3: g

© 2013 IBM Corporation

P-ary Search - Implementation
•  Strongly relies on fast synchronization

•  friends = threads / vector elements

 Iteration 1)

 Iteration 2)

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9

P0: g P1: g P2: g P3: g

 P0 P1 P2 P3: g

c d e f g h i j k

© 2013 IBM Corporation

P-ary Search - Implementation
•  Strongly relies on fast synchronization

•  friends = threads / vector elements

 Iteration 1)

 Iteration 2)

•  Synchronization ~ repartition cost
•  pthreads ($$), cmpxchng($)
•  SIMD SSE-vector, GPU threads via shared memory (~0)

•  Implementation using a B-tree is similar and (obviously) faster

a b c d e f g h i j k l m n o p q r s t u v w x y z 4 5 6 7 8 9

P0: g P1: g P2: g P3: g

 P0 P1 P2 P3: g

c d e f g h i j k

© 2013 IBM Corporation

•  B-trees group pivot elements into nodes

P-ary Search - Implementation

d g h i j k o p q r

4 c k s z

5 8 9 a b

6 7

...

P0P1P2P3

P0P1P2P3

•  Access to pivot elements is coalesced instead of a gather
•  Nodes can also be mapped to

–  Cache Lines (CSB+ trees)
–  Vectors (SSE)
–  #Threads per block

© 2013 IBM Corporation

P-ary Search on a sorted integer list – Implementation (1)

__shared__ int offset;
__shared__ int cache[BLOCKSIZE+2]

__global__ void parySearchGPU(int� data, int length,

 int� list_of_search_keys, int� results)

 int start, sk;
 int old_length = length;

// initialize search range starting with the whole data set
 if (threadIdx.x ==0) {

 offset = 0;
 // cache search key and upper bound in shared memory

 cache[BLOCKSIZE] = 0x7FFFFFFF;
 cache[BLOCKSIZE+1] = list_of_search_keys[blockIdx.x];

 results[blockIdx.x] = -1;
 }

 __syncthreads();
 //

 sk = cache[BLOCKSIZE+1];

© 2013 IBM Corporation

P-ary Search on a sorted integer list – Implementation (1)

__shared__ int offset;
__shared__ int cache[BLOCKSIZE+2]

__global__ void parySearchGPU(int� data, int length,

 int� list_of_search_keys, int� results)

 int start, sk;
 int old_length = length;

// initialize search range starting with the whole data set
 if (threadIdx.x ==0) {

 offset = 0;
 // cache search key and upper bound in shared memory

 cache[BLOCKSIZE] = 0x7FFFFFFF;
 cache[BLOCKSIZE+1] = list_of_search_keys[blockIdx.x];

 results[blockIdx.x] = -1;
 }

 __syncthreads();
 //

 sk = cache[BLOCKSIZE+1]; Why?

© 2013 IBM Corporation

P-ary Search on a sorted list – Implementation (2)
 // repeat until the #keys in the search range < #threads
 while (length > BLOCKSIZE){

 // calculate search range for this thread
 length = length/BLOCKSIZE;

 if (length * BLOCKSIZE < old_length) length += 1;
 old_length = length;

 // why don’t we just use floating point?
 start = offset + threadIdx.x * length;

 // cache the boundary keys
 cache[threadIdx.x] = data[start];

 __syncthreads();
 // if the searched key is within this thread's subset,

 // make it the one for the next iteration
 if (sk >= cache[threadIdx.x] && sk < cache[threadIdx.x+1]){

 offset = start;
 }

 __syncthreads();
 // all threads start next iteration with the new subset

 }

© 2013 IBM Corporation

P-ary Search on a sorted list – Implementation (2)
 // repeat until the #keys in the search range < #threads
 while (length > BLOCKSIZE){

 // calculate search range for this thread
 length = length/BLOCKSIZE;

 if (length * BLOCKSIZE < old_length) length += 1;
 old_length = length;

 // why don’t we just use floating point?
 start = offset + threadIdx.x * length;

 // cache the boundary keys
 cache[threadIdx.x] = data[start];

 __syncthreads();
 // if the searched key is within this thread's subset,

 // make it the one for the next iteration
 if (sk >= cache[threadIdx.x] && sk < cache[threadIdx.x+1]){

 offset = start;
 }

 __syncthreads();
 // all threads start next iteration with the new subset

 }

Why?

© 2013 IBM Corporation

P-ary Search on a sorted list – Implementation (3)

 // last iteration

 start = offset + threadIdx.x;

 if (sk == data[start])

 results[blockIdx.x] = start;

}

© 2013 IBM Corporation

P-ary Search on a sorted list – Implementation (3)

 // last iteration

 start = offset + threadIdx.x;

 if (sk == data[start])

 results[blockIdx.x] = start;

}

 Why don’t cache?

© 2013 IBM Corporation

P-ary Search – Analysis

•  100% processor utilization for each query

•  Multiple threads can find a result
•  How does this impact correctness?

c d e f g h i j

 P0 P1 P2 P3: g

k

© 2013 IBM Corporation

P-ary Search – Analysis

•  100% processor utilization for each query

•  Multiple threads can find a result
•  How does this impact correctness?

•  Convergence depends on #threads

"  GTX285: 1 SM, 8 cores(threads) → p=8

•  Better Response time
• logp(n) vs log2(n)

c d e f g h i j

 P0 P1 P2 P3: g

k

© 2013 IBM Corporation

P-ary Search – Analysis

•  100% processor utilization for each query

•  Multiple threads can find a result
• Does not change correctness

•  Convergence depends on #threads

 GTX285: 1 SM, 8 cores(threads) → p=8

•  Better Response time
• logp(n) vs log2(n)

•  More memory access
• (p*2 per iteration) * logp(n)
• Caching
(p-1) * logp(n) vs. log2(n)

c d e f g h i j

PE0 PE1 PE2 PE3: g

k

© 2013 IBM Corporation

P-ary Search – Analysis

•  100% processor utilization for each query

•  Multiple threads can find a result
• Does not change correctness

•  Convergence depends on #threads

 GTX285: 1 SM, 8 cores(threads) → p=8

•  Better Response time
• logp(n) vs log2(n)

•  More memory access
• p*2 per iteration * logp(n)
• Caching
(p-1) * logp(n) vs. log2(n)

•  Lower Throughput
• 1/logp(n) vs p/log2(n)

c d e f g h i j

PE0 PE1 PE2 PE3: g

k

Th
ro

ug
hp

ut
 [R

es
ul

ts
/U

ni
t o

f T
im

e]

© 2013 IBM Corporation

P-ary Search (GPU) – Throughput

Searching a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

•  Superior throughput compared to conventional algorithms

#parallel queries

© 2013 IBM Corporation

P-ary Search (GPU) – Response Time

Searching a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

•  Response time is workload independent for B-tree implementation

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

[µ
s]

#parallel queries

© 2013 IBM Corporation

P-ary Search (GPU) – Scalability

64K search queries against a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

•  GPU Implementation using SIMT (SIMD threads)
•  Scalability with increasing #threads (P)

© 2013 IBM Corporation

64K search queries against a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b, 1.5GHz, GDDR3 1.2GHz.

•  GPU Implementation using SIMT (SIMD threads)
•  Scalability with increasing #threads (P)

P-ary Search (GPU) – Scalability

© 2013 IBM Corporation

P-ary Search(CPU) = K-ary Search1

Searching a 512MB data set with 134mill. 4-byte integer entries,
Core i7 2.66GHz, DDR3 1666.

•  K-ary search is the same algorithm ported to the CPU using
SSE vectors (int4) → convergence rate log4(n)

1 B. Schlegel, R. Gemulla, W. Lehner, k-Ary Search on Modern Processors, DaMoN 2000

K-ary

© 2013 IBM Corporation

P-ary Search(CPU) = K-ary Search1

64K search queries against a 512MB data set with 134mill. 4-byte integer entries,
Core i7 2.66GHz, DDR3 1666.

•  Throughput scales proportional to #threads

1 B. Schlegel, R. Gemulla, W. Lehner, k-Ary Search on Modern Processors, DaMoN 2000

K-ary

© 2013 IBM Corporation

Agenda

•  GPU search
–  Reminder: Porting CPU search
–  Back to the drawing board:

•  P-ary search
•  Experimental evaluation
•  Why it works

•  Building a GPU based data warehouse solution
–  From a query to operators
–  What to accelerate
–  What are the bottlenecks/limitations

•  Maximizing data path efficiency
–  Extremely fast storage solution
–  Storage to host to device

•  Putting it all together
–  Prototype demo

© 2013 IBM Corporation

A data warehousing query in multiple languages
A closer look at DWH queries

■  English: Show me the annual development of revenue from US sales of
US products for the last 5 years by city

35

© 2013 IBM Corporation

A data warehousing query in multiple languages
A closer look at DWH queries

■  English: Show me the annual development of revenue from US sales
of US products for the last 5 years by city

■  SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue)
 FROM lineorder lo, customer c, supplier s, date d
 WHERE lo.custkey = c.custkey
 AND lo.suppkey = s.suppkey
 AND lo.orderdate = d.datekey
 AND c.nation = ’UNITED STATES’
 AND s.nation = ’UNITED STATES'
 AND d.year >= 1998 AND d.year <= 2012

 GROUP BY c.city, s.city, d.year
 ORDER BY d.year asc, revenue desc;

36

© 2013 IBM Corporation

A data warehousing query in multiple languages
A closer look at DWH queries

■  English: Show me the annual development of revenue from US sales
of US products for the last 5 years by city

■  SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue)
 FROM lineorder lo, customer c, supplier s, date d
 WHERE lo.custkey = c.custkey
 AND lo.suppkey = s.suppkey
 AND lo.orderdate = d.datekey
 AND c.nation = ’UNITED STATES’
 AND s.nation = ’UNITED STATES'
 AND d.year >= 1998 AND d.year <= 2012

 GROUP BY c.city, s.city, d.year
 ORDER BY d.year asc, revenue desc;

37

?

© 2013 IBM Corporation

Star Schema – typical for DWH

Query:
SELECT c.city, s.city, d.year, SUM(lo.revenue) FROM lineorder lo, customer c, supplier s, date d
WHERE lo.custkey = c.custkey AND lo.suppkey = s.suppkey AND lo.orderdate = d.datekey AND
c.nation = ’UNITED STATES’ AND s.nation = ’UNITED STATES’ AND d.year >= 1998 AND d.year <= 2012
GROUP BY c.city, s.city, d.year ORDER BY d.year asc, revenue desc;

A closer look at DWH queries

ORDERKEY!
LINENUMBER!
CUSTKEY!
PARTKEY!
SUPPKEY!
ORDERDATE!
ORDPRIORITY!
…!
…!
COMMITDATE!
SHIPMODE!

CUSTKEY!
NAME!
ADDRESS!
CITY!
…!

SUPPKEY!
NAME!
ADDRESS!
CITY!
…!

PARTKEY!
NAME!
MFGR!
CATEGORY!
BRAND!
…!

DATEKEY!
DATE!
DAYOFWEEK!
MONTH!
YEAR!
…!

Customer

Date

Lineorder

Supplier

Part

38

© 2013 IBM Corporation

A data warehousing query in multiple languages
A closer look at DWH queries

■  English: Show me the annual development of revenue from US sales
of US products for the last 5 years by city

■  SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue)
 FROM lineorder lo, customer c, supplier s, date d
 WHERE lo.custkey = c.custkey
 AND lo.suppkey = s.suppkey
 AND lo.orderdate = d.datekey
 AND c.nation = ’UNITED STATES’
 AND s.nation = ’UNITED STATES'
 AND d.year >= 1998 AND d.year <= 2012

 GROUP BY c.city, s.city, d.year
 ORDER BY d.year asc, revenue desc;

39

Database primitives (operators):
– Predicate(s): customer, supplier, and date direct filter (yes/no)
– Join(s): lineorder with part, supplier, and date correlate tables & filter
– Group By (aggregate): city and date correlate tables & sum
– Order By: year and revenue sort

 What are the most time-consuming operations?

© 2013 IBM Corporation

Where does time go?
A closer look at DWH queries

SELECT c.city, s.city, d.year, SUM(lo.revenue)
 FROM lineorder lo, customer c, supplier s, date d
 WHERE c.nation = ’UNITED STATES’ AND lo.custkey = c.custkey
 AND s.nation = ’UNITED STATES’ AND lo.suppkey = s.suppkey
 AND d.year >= 1998 AND d.year <= 2012 AND lo.orderdate = d.datekey
 GROUP BY c.city, s.city, d.year

 ORDER BY d.year asc, revenue desc;

40

© 2013 IBM Corporation

Relational Joins

41

Key Zip
11 95014
23 94303
27 95040
39 95134

Revenue Customer

$10.99 23
$49.00 14
$11.00 56

$103.00 11
$84.50 39
$60.10 27

$7.60 23

Sales (Fact Table)
Customers (living in US)

Revenue Zip
$10.99 94303

$103.00 95014
$84.50 95134
$60.10 95040

$7.60 94303

=

Join
Results Payload (p)

Foreign Key (fk)

Primary Key (k)

Measure (m)

A closer look at DWH queries

© 2013 IBM Corporation

Join two tables (|S| < |R|) in 2 steps
1.  Build a hash table

–  Scan S and compute a location (hash)
based on a unique (primary) key

–  Insert primary key k with payload p into
the hash table

–  If the location is occupied pick the next
free one (open addressing)

A closer look at DWH queries

 k2,p2

Hash table S

S
ca

n k1,p1 k1,p1

 k2,p2

Hash Join

42

© 2013 IBM Corporation

Join two tables (|S| < |R|) in 2 steps
1.  Build a hash table

–  Scan S and compute a location (hash)
based on a unique (primary) key

–  Insert primary key k with payload p into
the hash table

–  If the location is occupied pick the next
free one (open addressing)

2.  Probe the hash table
–  Scan R and compute a location (hash)

based on the reference to S (foreign
key)

–  Compare foreign key fk and key k in
hash table

–  If there is a match store the result (m,p)

fk2,m2

 k6,p6

Hash table R

S
ca

n

A closer look at DWH queries

...
fk1,m1

 k2,p2

 k5,p5

 k1,p1

 k3,p3

 k4,p4

 k7,p7

Hash Join

43

© 2013 IBM Corporation

"  Multiple threads scan T1 and attempt to insert <key,rid> pairs into the hash table

"  How to handle hash collisions?

Parallel Hash Join

Hash table

T1

S
can

S
can

S
can

P
arallel

Collisions

A closer look at DWH queries

© 2013 IBM Corporation

"  Multiple threads scan T1 and attempt to insert <key,rid> pairs into the hash table

"  How to handle hash collisions?

"  Is this a good access pattern?

"  Parallel probe is trivial as it requires read-only access

Parallel Hash Join

Hash table

T1

S
can

S
can

S
can

P
arallel

Collisions

A closer look at DWH queries

© 2013 IBM Corporation

Hash Join

46

Key Zip
11 95014
23 94303
27 95040
39 95134

Revenue Customer

$10.99 23
$49.00 14
$11.00 56

$103.00 11
$84.50 39
$60.10 27

$7.60 23

Sales (Fact Table)
Customers (living in US)

Hash Table (HT)

Probe Inputs

Revenue Zip
$10.99 94303

$103.00 95014
$84.50 95134
$60.10 95040

$7.60 94303

=

Join
Results Payload (p) Primary Key (k)

Foreign Key (fk)

A closer look at DWH queries

How fast are hash probes ?
-  Computation
-  Data (memory) access

© 2013 IBM Corporation

Computing Hash Functions on GTX580 – Compute only *

47

Hash Function/
Key Ingest GB/s

Seq keys+
Hash

LSB 338
Fowler-Noll-Vo 1a 129
Jenkins Lookup3 79
Murmur3 111
One-at-a-time 85
CRC32 78
MD5 4.5
SHA1 0.81

^

seq.
keys

h(x)

sum

^

seq.
keys

h(x)

sum

^

seq.
keys

h(x)

sum

^

seq.
keys

h(x)

sum

32

sum

threads

"  Threads generate sequential keys
"  Hashes are XOR-summed locally

Cryptographic message
digests

32-bit keys, 32-bit hashes

* More details on hashing: “Let your GPU do the heavy lifting in your data warehouse” GTC’13

A closer look at DWH queries

…

© 2013 IBM Corporation

Hash Join – Data Access Patterns
A closer look at DWH queries

■  Primary data access patterns:
– Scan the input table(s) for HT creation and probe
– Compare and swap when inserting data into HT
– Random read when probing the HT

48

© 2013 IBM Corporation

Hash Join – Data Access Patterns
A closer look at DWH queries

■  Primary data access patterns:
– Scan the input table(s) for HT creation and probe
– Compare and swap when inserting data into HT
– Random read when probing the HT

■  Data (memory) access on

GPU
(GTX580)

CPU
(i7-2600)

Peak memory bandwidth [spec] 1) 179 GB/s 21 GB/s

Peak memory bandwidth [measured] 2) 153 GB/s 18 GB/s Scan R, S

vs.

Upper bound for:

49

(1) Nvidia: 192.4 � 106 B/s ≈ 179.2 GB/s
(2) 64-bit accesses over 1 GB of device memory

© 2013 IBM Corporation

Hash Join – Data Access Patterns
A closer look at DWH queries

■  Primary data access patterns:
– Scan the input table(s) for HT creation and probe
– Compare and swap when inserting data into HT
– Random read when probing the HT

■  Data (memory) access on

GPU
(GTX580)

CPU
(i7-2600)

Peak memory bandwidth [spec] 1) 179 GB/s 21 GB/s

Peak memory bandwidth [measured] 2) 153 GB/s 18 GB/s

Random access [measured] 2) 6.6 GB/s 0.8 GB/s

Compare and swap [measured] 3) 4.6 GB/s 0.4 GB/s

vs.

Build HT
Probe

Upper bound for:

50

(1) Nvidia: 192.4 � 106 B/s ≈ 179.2 GB/s
(2) 64-bit accesses over 1 GB of device memory
(3) 64-bit compare-and-swap to random locations over 1 GB device memory

© 2013 IBM Corporation

GPU Hash Join Implementation (Summary)
Hash Join – Kernel(s)

1.  Pin input tables
– Required for Build and Probe table, done bye the CPU
– Only pinned CPU memory is accessible by the GPU
– “GPU direct” now allows to read directly from network/storage devices …

2.  Allocate memory for HT
– CPU handles memory allocation of GPU memory
– This is supposed to change with the next GPU generation …

3.  Build HT
– GPU reads build table (T1) sequentially from pinned CPU memory
– GPU creates HT (open addressing) in GPU memory
– Collisions are handled using atomic compare-and-swap

4.  Probe HT
– GPU reads probe table (T2) sequentially from CPU memory
– GPU probes hash table (in GPU memory) and writes results to CPU memory

5.  Cleanup
– free GPU memory
– Unpin input tables

© 2013 IBM Corporation

GPU Hash Join – Build HT

" GPU reads build table (T1) sequentially from pinned CPU memory

" GPU creates HT (open addressing) in GPU memory

" Collisions are handled using atomic compare-and-swap

Hash table Build table (T1)

Create HT
@ 4.6 GB/s?

Key
Key

Key

Key
Key

ridT1
ridT1

ridT1

ridT1
ridT1

key
key
key
key
key
key

ridT1
ridT1
ridT1
ridT1
ridT1
ridT1

Hash Join – Kernel(s)

© 2013 IBM Corporation

Build HT – Memory Management & Function call
Hash Join – Kernel(s)

// register input table

// 32-bit key + 32-bit rid are stored as a single 64-bit value

unsigned long long int* buildT;

cudaHostRegister(T1,num_tuples*2*sizeof(int),cudaHostRegisterMapped);

cudaHostGetDevicePointer(&buildT,T1,0);

// make space for hash table

unsigned long long int* HT;

int HT_rows = 4 * num_tuples;

cudaMalloc(&HT, HT_rows * sizeof(int));

cudaMemSet(HT, 0, HT_rows * sizeof(int));

// call device function

dim3 Dg = dim3(16,0,0);

dim3 Db = dim3(512,0,0);

gpuCreateHashtable <<< Dg, Db >>>(builtT, num_tuples,

 HT, HT_rows);

© 2013 IBM Corporation

Build HT – Local variables
Hash Join – Kernel(s)

__global__ static void gpuCreateHashtable(unsigned long long int *buildT,

 int num_tuples,

 unsigned long long int *HT,

 int HT_rows){

int insert_loc; // insert location for tuple

int tupleID; // iterator for the build table

int cas_result; // HT was initialized with 0, i.e.

 // if insert was successful then

 // cas_result = 0

int hash_mask = HT_rows - 1; // LSB hash mask (for powers of 2!)

unsigned long long int buildT_cache; // register cache for a build table

int key; // key extracted from build table

© 2013 IBM Corporation

Build HT – Outline
Hash Join – Kernel(s)

// Iterate through the tuples of the build table and insert them into the

// hash table

for (tupleID = blockIdx.x*blockDim.x+threadIdx.x;

 tupleID < num_tuples;

 tupleID += blockDim.x*gridDim.x){

 /* 1) Cache the build table entry (key,rid) in a register

 * 2) Apply hash function (LSB) to to key to determine insert position

 * 3) Starting from the insert position, scan for the next available

 * slot

 * 4) Atomically insert the entry into the hash table

 */

© 2013 IBM Corporation

Build HT – Memory Access
Read build table from host memory

Hash Join – Kernel(s)

for (tupleID = blockIdx.x*blockDim.x+threadIdx.x;

 tupleID < num_tuples;

 tupleID += blockDim.x*gridDim.x){

buildT_cache = buildT[tupleID];

"  Ideal memory access pattern is coalesced memory access
– Threads of a block/warp access consecutive memory addresses

– Same applies to ZCA to host(main) memory

•  Coalesced access up to 6.2 GB/s
•  Random = faux pas !

Memory
address

Thread 1 Thread 2 Thread N

m m+1 m+n

…

…

© 2013 IBM Corporation

Build HT – Core Loop
for (tupleID = blockIdx.x*blockDim.x+threadIdx.x;

 tupleID < num_tuples;

 tupleID += blockDim.x*gridDim.x)

{

 cas_result = 42; // answer to everything ;-)

 // 1) Cache the build table entry (key,rid) in a register

 buildT_cache = buildT[tupleID];

Hash Join – Kernel(s)

© 2013 IBM Corporation

Build HT – Core Loop
for (tupleID = blockIdx.x*blockDim.x+threadIdx.x;

 tupleID < num_tuples;

 tupleID += blockDim.x*gridDim.x)

{

 cas_result = 42; // answer to everything ;-)

 // 1) Cache the build table entry (key,rid) in a register

 buildT_cache = buildT[tupleID];

 // 2) Apply LSB hash to key to determine insert position

 // Little endian: <key,rid> becomes <rid,key> in the register

 key = (int)(buildT_cache & 0xFFFFFFFF); // key in the lower half

 insert_loc = key & hash_mask;

Hash Join – Kernel(s)

© 2013 IBM Corporation

Build HT – Core Loop
for (tupleID = blockIdx.x*blockDim.x+threadIdx.x;

 tupleID < num_tuples;

 tupleID += blockDim.x*gridDim.x)

{

 cas_result = 42; // answer to everything ;-)

 // 1) Cache the build table entry (key,rid) in a register

 buildT_cache = buildT[tupleID];

 // 2) Apply LSB hash to key to determine insert position

 // Little endian: <key,rid> becomes <rid,key> in the register

 key = (int)(buildT_cache & 0xFFFFFFFF); // key in the lower half

 insert_loc = key & hash_mask;

 // 3) From insert position scan for the next available slot (0) to

 // avoid repeated atomic compare-and-swap ($$$)

 while (HT[insert_loc] != 0)

 insert_loc = ++insert_loc & hash_mask;

Hash Join – Kernel(s)

© 2013 IBM Corporation

Build HT – Core Loop
 // 1) Cache the build table entry (key,rid) in a register

 buildT_cache = buildT[tupleID];

 // 2) Apply LSB hash to key to determine insert position

 // Little endian: <key,rid> becomes <rid,key> in the register

 key = (int)(buildT_cache & 0xFFFFFFFF); // key in the lower half

 insert_loc = key & hash_mask;

 // 3) From insert position scan for the next available slot (0) to

 // avoid repeated atomic compare-and-swap ($$$)

 while (HT[insert_loc] != 0)

 insert_loc = ++insert_loc & hash_mask;

 // 4) Atomically insert entry into the hash table

 while(cas_result != 0){

 cas_result = atomicCAS(&(HT[insert_loc]), 0, buildT_cache);

 insert_loc = ++insert_loc & hash_mask;

 }

Hash Join – Kernel(s)

© 2013 IBM Corporation

GPU Hash Join – Probe HT

" GPU reads probe table (T2) sequentially from CPU memory
" GPU probes hash table (in GPU memory) and writes results to CPU memory

Hash table
fk
fk
fk
fk
fk
fk

ridT2
Probe table

ridT2
ridT2
ridT2
ridT2
ridT2

Probe HT
@ 6.2 GB/s?

Key
Key

Key

Key
Key

ridT1
ridT1

ridT1

ridT1
ridT1

Store results
@ 6.2 GB/s?

ridT1
ridT1

ridT2
Join result

ridT2

Hash Join – Kernel(s)

© 2013 IBM Corporation

Probe HT – Memory Management & Function call
Hash Join – Kernel(s)

// register input table

// 32-bit key + 32-bit rid are stored as a single 64-bit value

unsigned long long int* probeT;
cudaHostRegister(T2,num_tuples*2*sizeof(int),cudaHostRegisterMapped);
cudaHostGetDevicePointer(&probeT,T2,0);

// make space for results

unsigned long long int* resG;
cudaHostAlloc(&resG, 2 * num_tuples * sizeof(int));

// result index

__device__ int gpu_result_index;
cudaMemcpyToSymbol(gpu_result_index, &null, sizeof(int));

// call device function

dim3 Dg = dim3(16,0,0);
dim3 Db = dim3(512,0,0);
gpuProbe <<< Dg, Db >>>(probeT, HT, resG, num_tuples, HT_rows);

© 2013 IBM Corporation

Probe HT – Local Variables
Hash Join – Kernel(s)

__global__ static void gpuProbe(unsigned long long int* probeT,

 unsigned long long int* HT,

 unsigned long long int* resG,

 int probeT_rows, int HT_rows)

{

 int probeT_key; // the probe table key used for a probe

 int HT_idx; // hash table location the probe lead to

 int HT_key; // the key found at the hash table
 // location of hashtable_idx

 int tupleID; // iterator for the probe table

 int hash_mask = HT_rows - 1; // LSB hash mask

 int result_insert_position; // index to the result, shared by ALL
 // threads (atomic insert)

 unsigned long long int probeT_cache; // register cache for probe table

 unsigned long long int HT_cache; // register cache for hash table

© 2013 IBM Corporation

Probe HT – Outline
Hash Join – Kernel(s)

// Iterate through the tuples of the probe table and

 for (tupleID=blockIdx.x*blockDim.x+threadIdx.x;

 tupleID < probeT_rows;

 tupleID+=blockDim.x*gridDim.x) {

 /* 1) Cache the fact table entry (key,rid) in a register & extract

 * the fact table key

 * 2) Apply the hash function to the key to determine the location

 * in the hash table

 * 3) Probe the hash table and cache the entry (key,rid) in a

 * register

 * 4) Scan the hash table for more matching keys until we hit an

 * empty (0) position

 */

© 2013 IBM Corporation

Probe HT – Core Loop
Hash Join – Kernel(s)

for (tupleID=blockIdx.x*blockDim.x+threadIdx.x;

 tupleID < probeT_rows;

 tupleID+=blockDim.x*gridDim.x){

 // 1) Cache the fact table entry (key,rid) in a register

 probeT_cache = probeT[tupleID];

 // Extract the fact table key

 // Little endian: <key,rid> becomes <rid,key> in the register

 probeT_key = (int)(probeT_cache & 0xFFFFFFFF); // key in lower half

© 2013 IBM Corporation

Probe HT – Core Loop
Hash Join – Kernel(s)

for (tupleID=blockIdx.x*blockDim.x+threadIdx.x;

 tupleID < probeT_rows;

 tupleID+=blockDim.x*gridDim.x){

 // 1) Cache the fact table entry (key,rid) in a register

 probeT_cache = probeT[tupleID];

 // Extract the fact table key

 // Little endian: <key,rid> becomes <rid,key> in the register

 probeT_key = (int)(probeT_cache & 0xFFFFFFFF); // key in lower half

 // 2) Hash the key to determine the location in the hash table

 HT_idx = probT_key & hash_mask;

© 2013 IBM Corporation

Probe HT – Core Loop
Hash Join – Kernel(s)

for (tupleID=blockIdx.x*blockDim.x+threadIdx.x;

 tupleID < probeT_rows;

 tupleID+=blockDim.x*gridDim.x){

 // 1) Cache the fact table entry (key,rid) in a register

 probeT_cache = probeT[tupleID];

 // Extract the fact table key

 // Little endian: <key,rid> becomes <rid,key> in the register

 probeT_key = (int)(probeT_cache & 0xFFFFFFFF); // key in lower half

 // 2) Hash the key to determine the location in the hash table

 HT_idx = probT_key & hash_mask;

 // 3) Probe the hash table and cache the entry (key,rid) in a register

 HT_cache = HT[HT_idx];

© 2013 IBM Corporation

Probe HT – Core Loop
Hash Join – Kernel(s)

 /* Scan open addressing hash table until we hit an empty(0) slot
 * 4.1) If keys match insert rids from the probe and hash table into
 * the global result set
 * 4.2) Cache the next hash table entry and extract the key
 */
 while (HT_cache != 0) {
 HT_key = (int)(HT_cache & 0xFFFFFFFF);
 if (probeT_key == HT_key) {
 // determine position in global result set
 result_insert_position = atomicAdd(&gpu_result_index, 1);
 // insert result=<rid,rid>
 // rids are both in the upper half of the register caches,
 // so we need to shift one of them (hashtable cache) down
 resG[result_insert_position] = (probeT_cache & 0xFFFFFFFF00000000)

 | (HT_cache >> 32);
 }
 HT_idx = ++HT_idx & hash_mask;
 HT_cache = HT[HT_idx];
}

© 2013 IBM Corporation

Retrieving result count & cleanup
Hash Join – Kernel(s)

...
// After GPU function completes
cudaDeviceSynchronize();
cudaMemcpyFromSymbol(rescount, gpu_result_index, sizeof(int));

// clean up memory
cudaHostUnregister(T1);
cudaHostUnregister(T1);
cudaFree(HT);
...

© 2013 IBM Corporation

Throughput
"  Join 2 equal size tables (16M rows) of 32-bit <key,row-ID> pairs (4+4 Byte)

– Uniformly distributed randomly generated keys
– 3% of the keys in the probe table have a match in the build table
– Measuring End-to-End throughput, i.e. input tables & results in host memory

few writes

worst
case

Evaluation GPU Join

© 2013 IBM Corporation

Throughput

few writes

"  Join 2 equal size tables (16M rows) of 32-bit <key,row-ID> pairs (4+4 Byte)
– Uniformly distributed randomly generated keys
– 3% of the keys in the probe table have a match in the build table
– Measuring End-to-End throughput, i.e. input tables & results in host memory

worst
case

Evaluation GPU Join

© 2013 IBM Corporation

Throughput

few writes

PCI-E

Random memory access CPU

Compare and Swap GPU

worst
case

"  Join 2 equal size tables (16M rows) of 32-bit <key,row-ID> pairs (4+4 Byte)
– Uniformly distributed randomly generated keys
– 3% of the keys in the probe table have a match in the build table
– Measuring End-to-End throughput, i.e. input tables & results in host memory

Evaluation GPU Join

© 2013 IBM Corporation
2 C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. Nguyen, A. Di Blas, V. Lee, N. Satish, P. Dubey. Sort
 vs. Hash revisited: fast join implementation on modern multi-core CPUs. VLDB 2009

 GPU vs. CPU

"  Join 2 equal size tables (512K to 128M) of 32-bit <key,row-ID> pairs (4 + 4 Byte)
" Uniformly distributed randomly generated keys
" 3% of the probe keys have a match in the build table
" CPU implementation does not materialize results

Evaluation GPU Join

© 2013 IBM Corporation
2 C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. Nguyen, A. Di Blas, V. Lee, N. Satish, P. Dubey. Sort
 vs. Hash revisited: fast join implementation on modern multi-core CPUs. VLDB 2009

 GPU vs. CPU

"  Join 2 equal size tables (512K to 128M) of 32-bit <key,row-ID> pairs (4 + 4 Byte)
" Uniformly distributed randomly generated keys
" 3% of the probe keys have a match in the build table
" CPU implementation does not materialize results
" Cycles/tuple not a meaningful metric

– depends on processor frequency, tuple size, …

Evaluation GPU Join

© 2013 IBM Corporation

Where does time go?
What’s there beside join?

SELECT SUM(lo.revenue), d.year, p.brand
 FROM lineorder lo, part p, supplier s, date d
 WHERE p.category = 'MFGR#12’ AND lo.partkey = p.partkey
 AND s.region = 'AMERICA’ AND lo.suppkey = s.suppkey
 AND lo.orderdate = d.datekey

 GROUP BY d.year, p.brand
 ORDER BY d.year, p.brand;

© 2013 IBM Corporation

Operator throughput

■  Using a straight forward GPU implementation
- Joins are running at < 1.5GB/s, ¼ of the expected speed!
- Where does time go?

What’s there beside join?

© 2013 IBM Corporation

GPU Join – Where does time go?

2.60%

30.39%

0.04%

20.83%

46.13% result_alloc
pin_input
createHT
probeHT
unpin

" < 21% of the runtime is spent on the actual join!
"  Join lineorder & part has < 4% selectivity
" At SF 100 (100GB database) p.partey is 5.4 MB, lo.partkey is 2.3 GB

– Need to pin & unpin 2.3 GB of lineorder data

What’s there beside join?

© 2013 IBM Corporation

result_alloc

pin_input

createHT

probeHT

unpin

0 1 2 3 4 5 6 7

throughput
ingestrate

Data Rate [GB/s]

O
pe

ra
tio

n

■  Pinning/Unpinning large amounts of memory is inefficient and time consuming!

What’s there beside join?

GPU Join – Where does time go?

© 2013 IBM Corporation

result_alloc

pin_input

createHT

probeHT

unpin

0 1 2 3 4 5 6 7

throughput
ingestrate

Data Rate [GB/s]

O
pe

ra
tio

n

■  Pinning/Unpinning large amounts of memory is inefficient and time consuming!

■  All steps are sequential … overlapping across operators is messy =(

■  We could copy data chunk-wise into a (smaller) pinned buffer …

■  Since we are already at it, how do we get the data from the file system (cache)?

What’s there beside join?

GPU Join – Where does time go?

© 2013 IBM Corporation

Data flow – Current approach

GPU
6.2 GB/s

3.8 GB/s

mmap(writeable)

file system
cache

Assume memory mapped files in FS cache
→ GPU accessible pages must be pinned
→ Pinned pages pages must be writable
 → copy page before pinning

PCI-E
zero copy

access

What’s there beside join?

cudaHostRegister(...);

© 2013 IBM Corporation

Data flow – Current approach

■  Even overlapping query execution with pinning pages for next operator (join)
leaves pinning as a bottleneck!

■  What if we use 2 pre-allocated buffers of pinned memory:

■  Copy data into one of the pinned buffers

■  Meanwhile the GPU can work on the data in the other buffer

GPU
6.2 GB/s

3.8 GB/s

mmap(writeable)

file system
cache

Assume memory mapped files in FS cache
→ GPU accessible pages must be pinned
→ Pinned pages pages must be writable
 → copy page before pinning

PCI-E
zero copy

access

What’s there beside join?

cudaHostRegister(...);

© 2013 IBM Corporation 82

Data flow: prefetch → memcpy → GPU access

Key Idea:
"  Split work: prefetch, copy, GPU access
"  Process data set in chunks, e.g. 1MB
"  In isolation prefetch & copy are faster

than GPU access vie PCI-E =)

"  Can we “simply” set up 3-stage Pipeline?

file system
cache

mmap(readonly)

GPU
PCI-E

zero copy
access

6.2 GB/s

pinned

prefetch copy
(7.4 GB/s) (8.3 GB/s)

...

What’s there beside join?

© 2013 IBM Corporation

Join with 3-stage pipeline

8.00%
0.28%

0.15%
0.13%

91.27%

0.16%

Result alloc
Pin Dimension
Pipeline setup
Create HT
Probe HT/ load Fact
Pipeline teardown

■  2x 1MB buffers, ~2300 Kernel invocations

SELECT SUM(lo.revenue), d.year, p.brand FROM lineorder lo, date d, part p, supplier s
WHERE lo.orderdate = d.datekey AND lo.partkey = p.partkey AND lo.suppkey = s.suppkey
AND p.category = 'MFGR#12’ AND s.region = 'AMERICA’
GROUP BY d.year, p.brand ORDER BY d.year, p.brand

What’s there beside join?

© 2013 IBM Corporation

Result alloc

Pin Dimension

Pipeline setup

Create HT

Probe HT/ load Fact

Pipeline teardown

0 1 2 3 4 5 6

throughput
ingestrate

Data Rate [GB/s]

O
pe

ra
tio

n

■  Join lineorder & part using 2x 1MB buffers yields > 4GB/s overall throughput

What’s there beside join?

Join with 3-stage pipeline

■  Other joins (with supplier and date) exhibit similar performance

© 2013 IBM Corporation

Result alloc

Pin Dimension

Pipeline setup

Create HT

Probe HT/ load Fact

Pipeline teardown

0 1 2 3 4 5 6

throughput
ingestrate

Data Rate [GB/s]

O
pe

ra
tio

n

■  Join lineorder & part using 2x 1MB buffers yields > 4GB/s overall throughput

What’s there beside join?

Join with 3-stage pipeline

■  Other joins (with supplier and date) exhibit similar performance

■  Group-by operator is quite similar to join, i.e. requires a hash table and an
atomic add and also achieves similar performance

■  Accelerating other operators is not worthwhile …

© 2013 IBM Corporation

Agenda

•  GPU search
–  Reminder: Porting CPU search
–  Back to the drawing board:

•  P-ary search
•  Experimental evaluation
•  Why it works

•  Building a complete data warehouse runtime with GPU support
–  From a query to operators – what to accelerate?
–  What are the bottlenecks/limitations

•  Maximizing data path efficiency
–  Extremely fast storage solution
–  Storage to host to device

•  Putting it all together
–  Prototype demo

© 2013 IBM Corporation

■  According to OCZ spec a Revodrive3 x2 can deliver 1.5 GB/s per card

Large data sets

6GB/s Storage Subsystem ?

87

© 2013 IBM Corporation

■  According to OCZ spec a Revodrive3 x2 can deliver 1.5 GB/s per card
■  Can we “just stripe” the data across 4 cards and achieve 6 GB/s?

Large data sets

6GB/s Storage Subsystem ?

88

© 2013 IBM Corporation

■  According to OCZ spec a Revodrive3 x2 can deliver 1.5 GB/s per card
■  Can we “just stripe” the data across 4 cards and achieve 6 GB/s?

■  Linux tools, i.e. mdraid + ext, max 2 GB/s
■  IBM GPFS with striping and heavy prefetching(72 threads) achieves 3 GB/s
■  SSD controllers on commodity SSDs use compression to improve throughput

Large data sets

6GB/s Storage Subsystem ?

89

© 2013 IBM Corporation

■  According to OCZ spec a Revodrive3 x2 can deliver 1.5 GB/s per card
■  Can we “just stripe” the data across 4 cards and achieve 6 GB/s?

■  Linux tools, i.e. mdraid + ext, max 2 GB/s
■  IBM GPFS with striping and heavy prefetching(72 threads) achieves 3 GB/s
■  SSD controllers on commodity SSDs use compression to improve throughput

■  Using 3 Texas Memory RamSan-70 and GPFS we get up to 7.5 GB/s =)

Large data sets

6GB/s Storage Subsystem ?

90

© 2013 IBM Corporation 91

Data flow: read → memcpy → GPU access

Setup:
"  Let GPFS do the striping & prefetching
"  2 CPU threads,

"  1 for filling a pinned buffer from FS
"  1 for controlling GPU execution

"  GPU reads data from pinned buffer(s)

GPFS

read

GPU
PCI-E

zero copy
access

6.2 GB/s

(pre-)pinned

prefetch

read()

> 6.2 GB/s x72

Large Data Sets

SSDs

© 2013 IBM Corporation

Result alloc

Pin Dimension

Pipeline setup

Create HT

Probe HT/ load Fact

Pipeline teardown

0 1 2 3 4 5 6

throughput
ingestrate

Data Rate [GB/s]

O
pe

ra
tio

n

■  Join lineorder & part using 2x 2MB buffers yields > 4GB/s overall throughput

What’s there beside join?

Join with 3-stage pipeline from SSD

■  Virtually no performance difference to in-memory solution =)

92

© 2013 IBM Corporation

Agenda

•  GPU search
–  Reminder: Porting CPU search
–  Back to the drawing board:

•  P-ary search
•  Experimental evaluation
•  Why it works

•  Building a complete data warehouse runtime with GPU support
–  From a query to operators – what to accelerate?
–  What are the bottlenecks/limitations

•  Maximizing data path efficiency
–  Extremely fast storage solution
–  Storage to host to device

•  Putting it all together
–  Prototype demo

© 2013 IBM Corporation 94

Questions?

